

Supporting Operations Personnel Through Performance Engineering

Len Bass

Australian Government

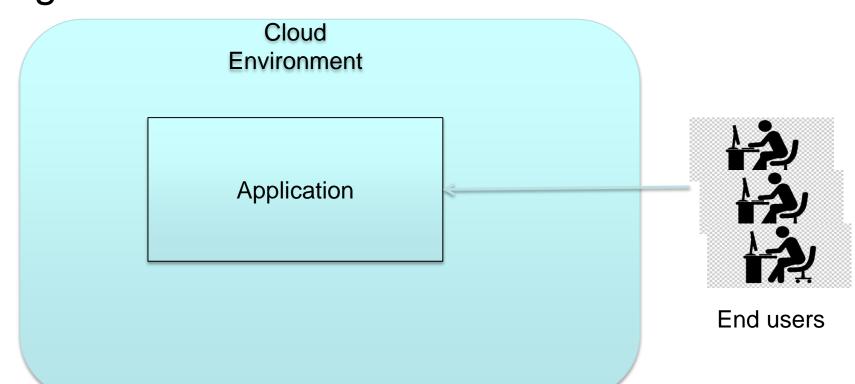
Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

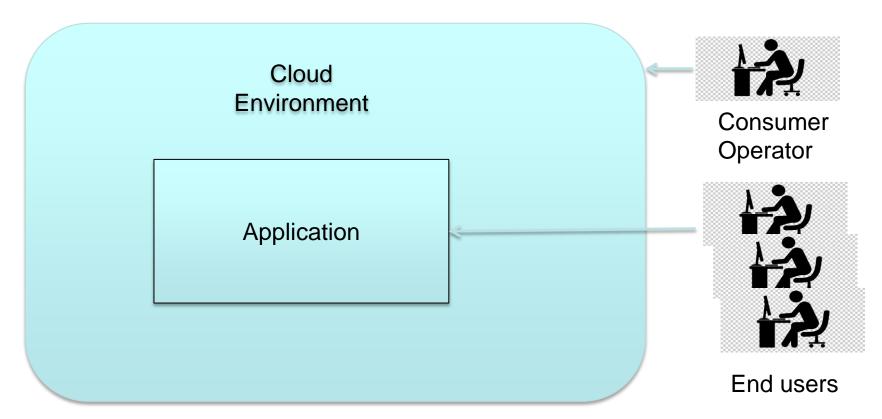
About NICTA

National ICT Australia

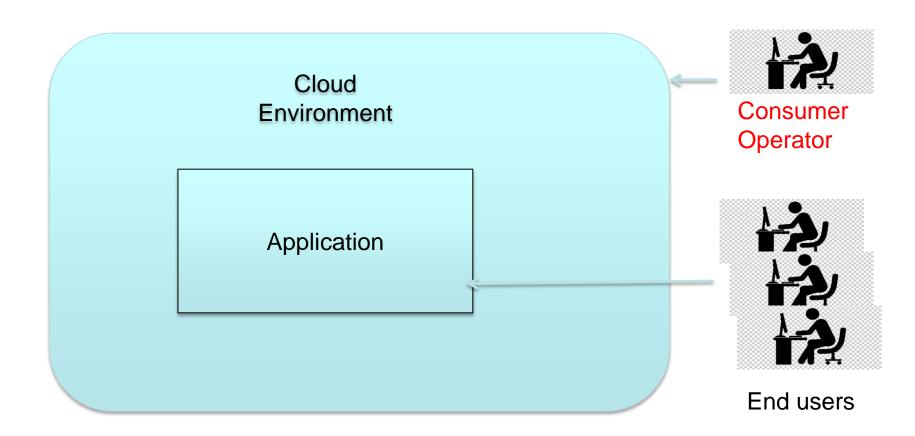

- Federal and state funded research company established in 2002
- Largest ICT research resource in Australia
- National impact is an important success metric
- ~700 staff/students working in 5 labs across major capital cities
- 7 university partners
- Providing R&D services, knowledge transfer to Australian (and global) ICT industry

NICTA technology is in over 1 billion mobile phones

Traditional View from Performance Engineers



Traditionally, the performance community has viewed systems as having users and existing in an environment. The motivating question has been: How can I, in this world, improve the performance of


A Broader View

Applications are not only affected by the behavior of the end users but also by actions of operators who control the environment for a consumer's application.

My message: Consider the operator in this picture

Business Context

"Through 2015, 80% of outages impacting mission-critical services will be caused by people and process issues, and more than 50% of those outages will be caused by change/configuration/release integration and hand-off issues."

Change/configuration/release integration and hand off are all operations issues.

Gartner - http://www.rbiassets.com/getfile.ashx/42112626510

Outline

- Overview of operations space
 - What do operators do?
 - What can go wrong with what they do?
- Some results we have achieved
- Operations through performance engineering glasses

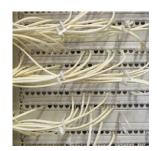
What do operators do?

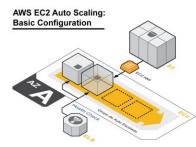
- Monitor and control data center/network/system activity
 - Install new/upgraded applications/middleware/configurations/hardware
- Support business continuity through back ups and disaster recovery

Akamai's NOC in Cambridge, Massachusetts

Monitor and Control

Data Center


- Total number and type of resources (may be virtual)
 - Processors
 - Storage
 - Network



- Intrusion detection
- Routing
- Loading
- System
 - Allocation to resources
 - Install/uninstall

What can go wrong with monitor and control?

NICTA

Everything that was on previous slide.

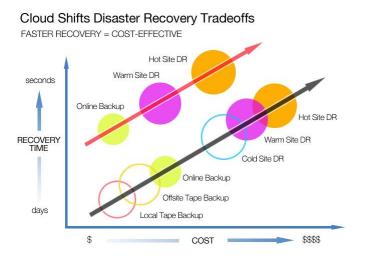
- Failure
 - Installations can fail
 - Resources fail and must be replaced

- Resources are over/under loaded and must be supplemented/removed
- Networks get overloaded and routing must be changed
- Error
 - Routing may be incorrectly specified
 - Allocation of systems to resources may be incorrect
 - Configurations can be incorrectly specified

Install new/upgraded applications

- Configuration for applications
- Synchronizing state for upgraded applications
- Testing new/upgraded applications in target environment
- Allocating resources for new version

What can go wrong with installing apps?



- Again its everything.
 - Configuration can be misspecified
 - Cut over to new version may leave inconsistent state
 - Rolling upgrade may introduce "mixed version race condition"
 - Upgrade to level N of the stack may break software in level >N of the stack
 - Testing environment may not appropriately mirror real environment

Supporting business continuity

- Disasters happen natural or human causes
- Backing up data provides recovery possibility
 - Lag between last version backed up and when disaster happens
 - In the Cloud, backing up large amounts of data to different geographic regions takes time.

Hand offs

14

- Problems can arise when a shift changes
 - What problems did old shift deal with?
 - What problems were totally solved?
 - What problems were partially solved?
 - What operations activities are currently ongoing?

Operations is a target rich environment

- There are many existing tools. Operation of data centers would not work without tools
- Much room for improvement (see Gartner quote)
- Some general approaches for improvement
 - Make software systems operations process aware. E.g. make them perform operations that humans might otherwise do.
 - Model operations processes and systems using a single model.
 I.e. model analysis will provide opportunities for detecting trade offs between human and automated activities. I will talk about our solution to the mixed version race condition.
 - Make tools process incident aware. Eg upgrade or shift change.

Outline

- Overview of operations space
- Some results we have achieved
 - Disaster Recovery product
 - Operator undo
 - Prevention of mixed version race condition
- Operations through performance engineering glasses

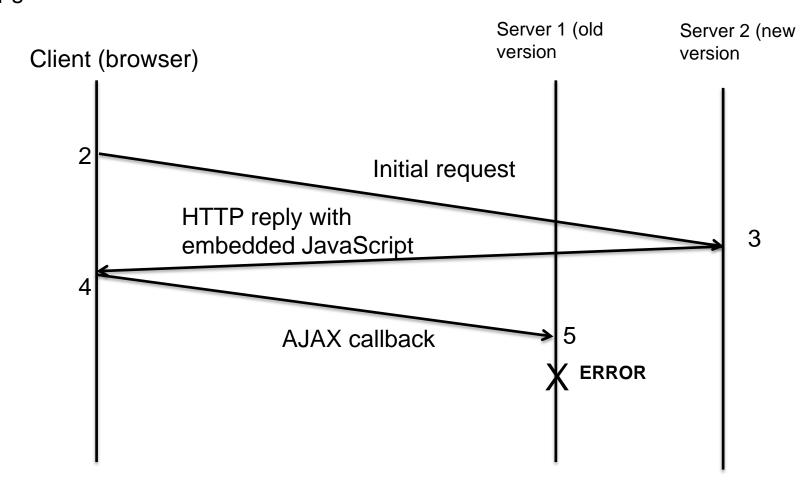
Disaster Recovery

- Clouds fail Amazon had three outages in 2011 that affected whole availability zones or regions.
- NICTA has a subsidiary (Yuruware) with a nonintrusive disaster recovery product (Bolt).
- Bolt copies data periodically to a back up region.
- Bolt utilizes sophisticated data movement techniques to reduce time required to back up
- This is an insurance policy.

Upgrade

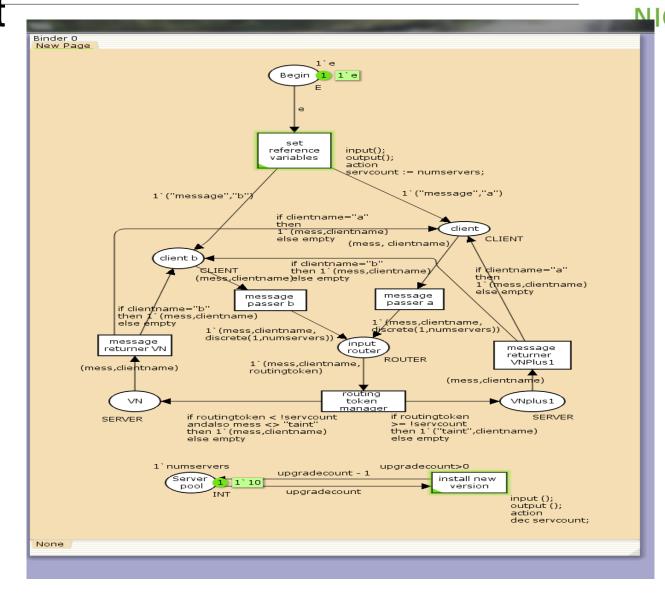
- You are installing version N+1 of an application and replacing version N.
- May take hours to install a new version on 1000s of machines
- Several different strategies

Strategies



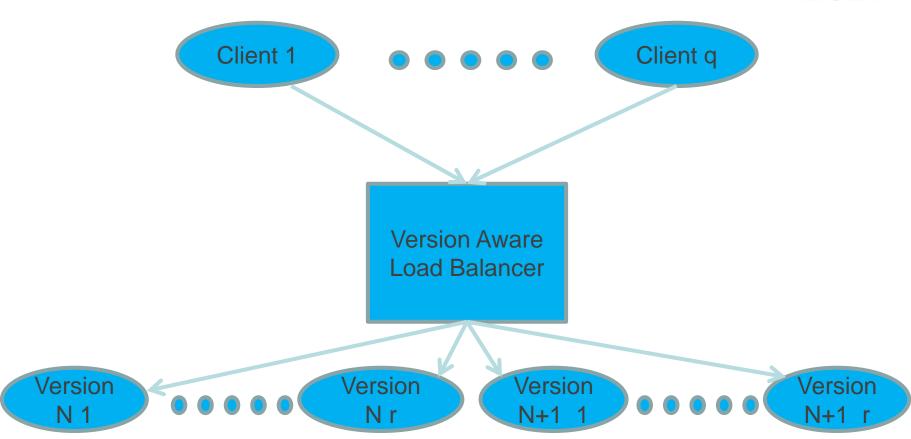
- Big flip—install version N+1 and keep all servers running version N active until an equivalent number of version N+1 servers are available. Switch version N off and switch version N+1 on. Requires 2 times resources required for each version.
- Rolling upgrade. For each server running version N, shut the server down, install version N+1, reboot. Requires minimal additional resources but means that different versions are simultaneously active. Industry standard practice. May lead to mixed version race condition.
 - One variant is to delay after first upgrade (canary) to ensure there are no problems.
 - Another variant is to stage upgrade. 100, 1000, 10000 servers, etc. More on this later

Mixed Version Race Condition


 Start rolling upgrade

Modelling Rolling Upgrade Using Colored

Petri Net


Preventing mixed version race condition

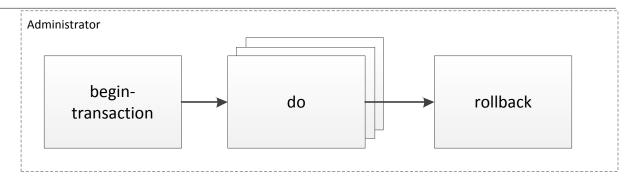
- Model verifies that making load balancer version aware will prevent mixed version race condition.
- Problems associated with making load balancer version aware
 - Difficulty in modifying load balancer
 - Performance impact on load balancer of necessary modifications
 - Making modified load balancer balance the load across requests and versions
 - Synchronizing solution across multiple independent clusters
- Student team has implemented a solution and solved the first two problems.

Version Aware Load Balancer

Constraint: once a client request has been routed to a Version N+1 server, no subsequent requests from that client are routed to a Version N server

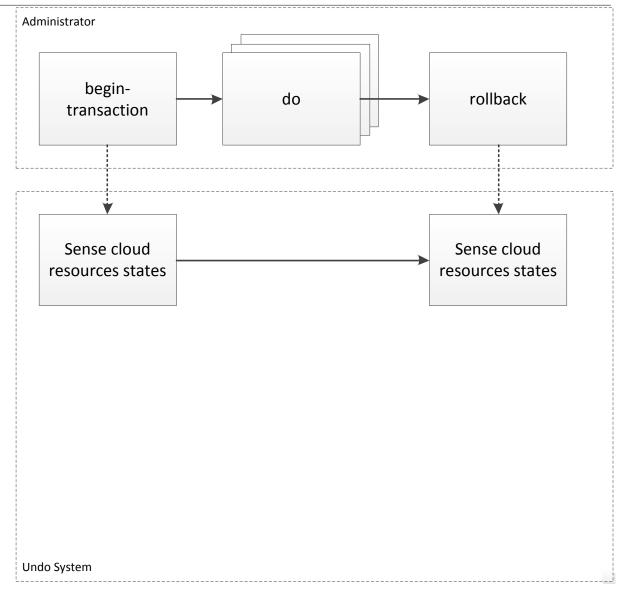
Scheduling Version Aware Load Balancer

- What is measure of goodness of load balancer scheduling algorithm?
 - Requests evenly distributed across all servers will not work in version aware context
 - Either some clients never see Version N+1 server or
 - Some servers never get requests
 - Keeping all servers within load constraints is complicated by version awareness and desire to complete upgrade quickly.
- Different variants for upgrade strategy will affect load balancer scheduling.
 - Canary strategy (small number of upgraded servers for a period) combined with version awareness means canaries must get sufficient number of requests to act as an indicator but not so many as to overwhelm them.


Operator undo

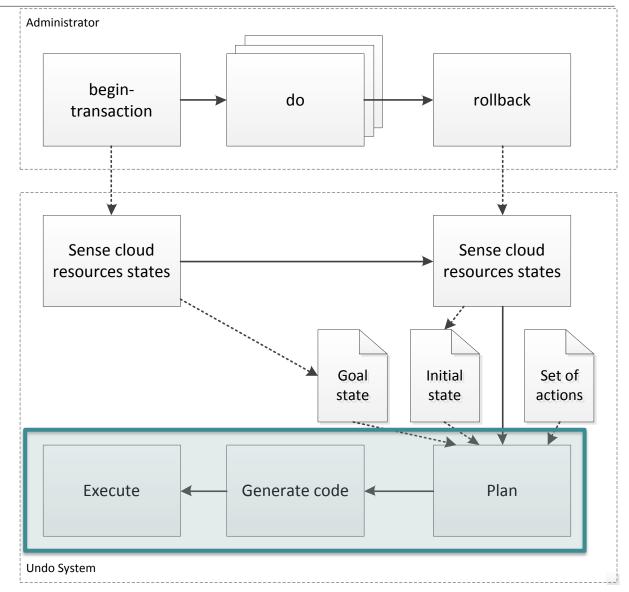
- After performing an operation in AWS, may want to go back to original state – i.e. Undo the operation
 - May be result of API failure
 - May be desire to set up testing environment
 - May be result of upgrade failure.
- Not always that straight-forward:
 - Attaching volume is no problem while the instance is running, detaching might be problematic
 - Creating / changing auto-scaling rules has effect on number of running instances
 - Cannot terminate additional instances, as the rule would create new ones!
 - Deleted / terminated / released resources are gone!

Undo for System Operators



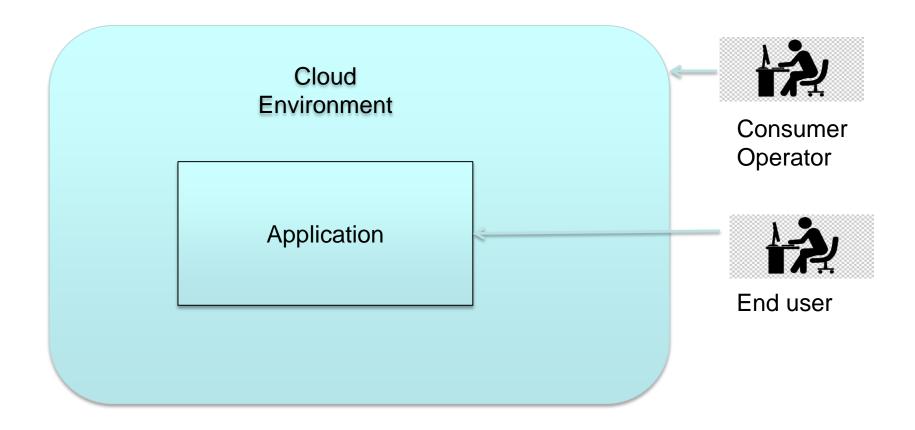
- + commit
- + pseudo-delete

Approach


Approach

Approach

Outline



- Overview of operations space
- Some results we have achieved
- Operations through performance engineer glasses*
 - Technical challenges
 - Adoption challenges

*apologies in case I am being too simplistic in this arena.

An application and its environment

Motivating Scenario

- You change the operating environment for an application
 - Configuration change
 - Version change
 - Hardware change
- Result is degraded performance
- When the software stack is deep with portions from different suppliers, the result is frequently:

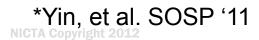
Technical Challenge 1

- Major internet company updates its underlying file system once a month.
- For each update
 - Week 1 push update to 1000 servers
 - Week 2 push update to 10,000 servers
 - Week 3 push update to 100, 000 servers
 - Week 4 push update to remaining servers
- Problems are reported by personal communication to individual in charge of file system.

Why is personal communication necessary?

- Some performance problems are only apparent when 10s of thousands of servers are active.
- 1% degradation in performance is within normal variance and not detected by existing models or tools.
- See "The Tail at Scale", CACM, Feb 2013 for a more precise description of why this problem occurs.
- Challenge: construct model or tool that can give early warning of subtle performance problem.

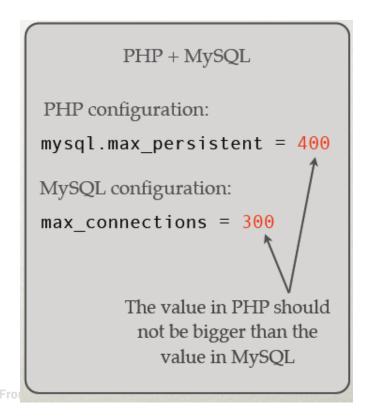
Configuration errors*



- Configuration errors have large impact on system availability – e.g. a Facebook misconfiguration caused several hour outage
- Performance degradation resulted from 2-20% of configuration errors.
- These type of errors are particularly difficult to detect, especially when multiple systems are

Choose a Configuration...

VPN Connection
A configuration error occurred.


involved.

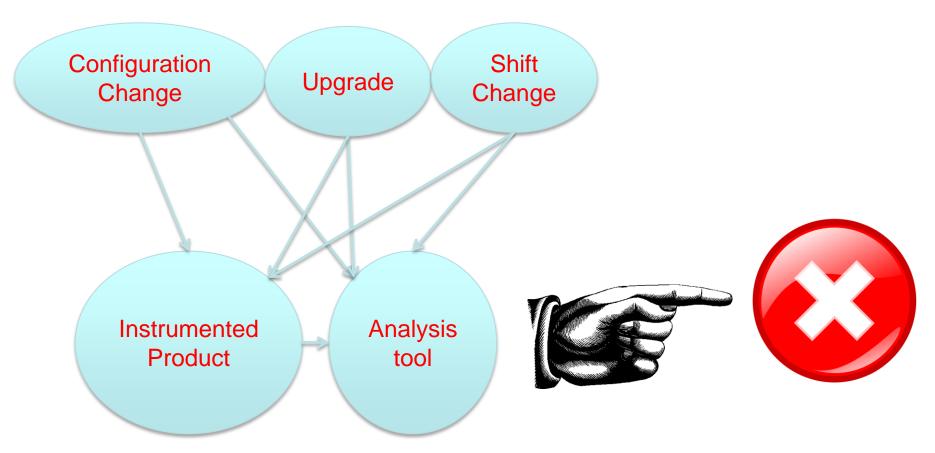
Technical Challenge 2

- Configuration parameters across multiple systems are particularly difficult to detect.
- How can performance engineering assist in detecting this type of error?

Adoption Challenge 1

- For some systems, UDP is used instead of TCP for performance reasons.
- UDP is faster than TCP but does not provide guaranteed delivery.
- Number of packets lost is a function of buffer size.
- Trade off between performance, memory, and packet loss.
- The person making the choice may be ignorant of performance engineering. How can the results of performance engineering be packaged to enable its use.

Adoption Challenge 2



- Database System mistakenly allocated to a slow disk/processor combination.
- How can performance engineering make this choice obvious quickly if the recipient is unsophisticated?

Desired World

39

General Question for Performance Engineers.

- How can you model effects produced by misconfiguration, user errors, or subtle effects?
- How can you make these models and their results available to people with no formal performance training?

How do I get information to perform research?

- Every open source program requires a variety of configuration parameters.
- Every modern applications depends on a variety of middleware so cross stack examples should be readily available.
- Most organizations have extensive processes for their operations personnel. Use these processes as a framework investigating process/product interactions.

Summary

- Operations problems will account for the majority of outages in the next several years.
- The operations space is a rich source of research problems that has been insufficiently mined.
- Many operations problems are caused by incorrect parameter setting. Performance problems are the most difficult to detect.
- Operations processes provide one setting for research.

Questions?

Contact len.bass@nicta.com.au