
Rusta: Elastic Processing and
Storage at the Edge of the Cloud

Steffen Viken Valvåg,
Dag Johansen, Åge Kvalnes

University of Tromsø, Norway

HotTopiCS 2013
Prague, April 20, 2013

Background

• Cloud services are becoming ubiquitous
• Blurred distinction between traditional

applications and services
– Applications are expected to synchronize

automatically across devices

• Proliferation of computing devices
– Increased demand for mobility
– Increased opportunity for offloading

Goals (I)

• Allow cloud services to flexibly integrate
computing resources available on client devices
and machines
– Processing: Delegate work to freely available client

machines rather than paying for processing time in
the cloud

– Storage: Since processing touches data, they are
interlinked, and decentralized storage may be
desirable

• Reduce operational costs, while preserving
availability and fault tolerance

Goals (II)

• Allow traditional applications to seamlessly
integrate computing resources available in the
cloud
– Off-loading: off-load work to the cloud to improve

performance or preserve battery
– Synchronization: Checkpoint and synchronize

application state across multiple devices

• Decouple the mode of deployment from the
application logic

Rusta Architecture

• A centralized hub service is implemented as a
conventional cloud service
– Maintains critical system state
– Common point of contact for all clients
– Code repository (Java class files)

• Clients communicate sparingly with the hub
– Bootstrapping new clients
– Looking up other clients
– Acquiring work to execute
– To coordinate checkpoints

Traditional Service Architecture

Rusta Architecture

Implementation

• Hub service implemented on Google App Engine,
in its Java servlet environment
– Accessed via XMPP, i.e. using a chat client
– “Command-line” admin interface via chat

• Client library implemented in Scala
– Provides high-level programming abstractions for

application/service developers
– Uses Akka to drive an internal actor system
– Communicates with the hub using GWT’s RPC
– Polling using Google’s channel API

Scala

• High-level multi-paradigm language
– Powerful type system
– Flexible syntax
– Structural pattern matching
– Closures

• Runs on the Java virtual machine (JVM)
– Integrates seamlessly with Java code

• Ideally suited for embedding domain-specific
languages (DSLs)

Programming Interface

• Rusta clients are written in Scala
– But can easily be glued to legacy Java code

• Functional continuation-based programming
– But tailored to mimic an imperative style

• Location transparent
– Data is accessed in a functional manner, so data

locality can be arranged transparently
– Move the computation to the data, or vice versa

Processes

• Rusta processes are light-weight execution units
– Thread-like programming abstraction
– Communicate through asynchronous message passing
– Each process has a main message processing loop and

may branch off into nested loops
• Process state is captured as a continuation

closure
– Limited by heap space only; scales to hundreds of

thousands of processes per machine
– Easy to serialize and transfer process state

Hello World

object Example extends RustaApp {

 val example = new Deployment {
 group("mygroup") {
 process("myprocess") {
 case 'start => println("hello from " + me)
 }
 }
 }

 system.deploy(example)
}

• This process listens for a single system-
generated ‘start message

Hello World

object Example extends RustaApp {

 val example = new Deployment {
 group("mygroup") {
 process("myprocess") {
 case 'start => println("hello from " + me)
 }
 }
 }

 system.deploy(example)
}

• This process listens for a single system-
generated ‘start message

Closure that constitutes
the main message handler

Hello World

object Example extends RustaApp {

 val example = new Deployment {
 group("mygroup") {
 process("myprocess") {
 case 'start => println("hello from " + me)
 }
 }
 }

 system.deploy(example)
}

• This process listens for a single system-
generated ‘start message

Structural pattern matching

Hello World

object Example extends RustaApp {

 val example = new Deployment {
 group("mygroup") {
 process("myprocess") {
 case 'start => println("hello from " + me)
 }
 }
 }

 system.deploy(example)
}

• This process listens for a single system-
generated ‘start message

Function of the Rusta API,
taking curried arguments

Hello World

object Example extends RustaApp {

 val example = new Deployment {
 group("mygroup") {
 process("myprocess") {
 case 'start => println("hello from " + me)
 }
 }
 }

 system.deploy(example)
}

• This process listens for a single system-
generated ‘start message

Process name and other
optional arguments

Group Namespace

• Rusta groups define a hierarchical namespace for
processes and data items

• Groups delineate sets of mutually trusted clients
– Processes may migrate freely within their group
– Data may be replicated freely within its group

• Allows fine-tuning trade-offs between privacy,
availability, and elasticity
– E.g., larger groups give more elasticity

• Potentially initialized from a social network

Message Passing

• Messages are arbitrary (immutable) objects
• Receivers use structural pattern matching to

select (and parse) messages to process
• Senders may specify a reply handler

– Specifies how to (eventually) process a reply
– Messages are tagged with sequence numbers that are

associated with pending reply handlers
– Invoked asynchronously whenever a reply arrives
– Syntactically tied to the sending code, improving

legibility

Message Passing Example

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }
}

Message Passing Example

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }
}

Destination process

Message Passing Example

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }
}

Message = arbitrary object
(a tuple in this case)

Message Passing Example

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }
}

Reply handler

Data Access

• Conceptually similar to sending messages and
handling replies
– Lookups specify a data key to look up, and a closure to

execute on the associated data value

• Just like the closures that capture process state,
these closures can be serialized and transferred
– Potentially sending the computation to the data
– Maintains location transparency while encouraging

data locality

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }

 process("thumbnails") {
 case (’get, path: String) => {
 getData(path) {
 case (image: Image, thumbnail) => {
 reply(thumbnail)
 }
 case (image: Image, null) => {
 val tn = makeThumbnail(image)
 putData(path, (image, tn))
 reply(tn)
 }
 case null => reply(null)
 }
 }
 }
}

Look up a data item and
process it asynchronously

group("images") {
 process("main") {
 case ’start => {
 send("thumbnails", (’get, "image.jpg")) {
 case null => println("No such image")
 case tn: Image => showImage(tn)
 }
 }
 }

 process("thumbnails") {
 case (’get, path: String) => {
 getData(path) {
 case (image: Image, thumbnail) => {
 reply(thumbnail)
 }
 case (image: Image, null) => {
 val tn = makeThumbnail(image)
 putData(path, (image, tn))
 reply(tn)
 }
 case null => reply(null)
 }
 }
 }
}

The context is preserved, so that the
original message can still be replied to

Stateful Processes
• Close over variables in outer scopes
• The Scala compiler includes the variables in

the closure’s state
• Used for internal state, private to a process

– E.g., for data aggregation

group("mygroup") {
 var x = 0

 process("myprocess") {
 case ‘getx => println("x = " + x); x += 1
 }
}

Ongoing Work

• Scheduling algorithms in the hub
– Distribute processes among eligible clients
– Process migration

• Data placement policies
– Replication costs vs. availability
– Cloud storage as a fallback to guarantee

availability
• Checkpointing algorithms

– Consistent cuts

Applications

• File sharing
– Basic image sharing application

• Collaboration systems
• Multi-cloud services
• Lifelog image analysis
• Personal sensor data processing (soccer domain)
• Social networking

– Analytics driven by client machines to empower users
while preserving privacy

Summary
• Rusta allows flexible and decentralized deployment of

cloud services
– Alternatively: easy offloading from clients to the cloud, and

to other clients
• Simple centralized architecture

– But the central hub is not a bottleneck
• High-level programming interface in Scala

– Light-weight and location-transparent processes
– Easy to migrate (compared to e.g., thread migration)

• Process checkpointing and migration currently
implemented
– Basic image sharing application developed

Questions?

	Rusta: Elastic Processing and Storage at the Edge of the Cloud
	Background
	Goals (I)
	Goals (II)
	Rusta Architecture
	Traditional Service Architecture
	Rusta Architecture
	Implementation
	Scala
	Programming Interface
	Processes
	Hello World
	Hello World
	Hello World
	Hello World
	Hello World
	Group Namespace
	Message Passing
	Message Passing Example
	Message Passing Example
	Message Passing Example
	Message Passing Example
	Data Access
	Slide Number 24
	Slide Number 25
	Stateful Processes
	Ongoing Work
	Applications
	Summary
	Questions?

