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Background 

• Cloud services are becoming ubiquitous 
• Blurred distinction between traditional 

applications and services 
– Applications are expected to synchronize 

automatically across devices 

• Proliferation of computing devices 
– Increased demand for mobility 
– Increased opportunity for offloading 



Goals (I) 

• Allow cloud services to flexibly integrate 
computing resources available on client devices 
and machines 
– Processing: Delegate work to freely available client 

machines rather than paying for processing time in 
the cloud 

– Storage: Since processing touches data, they are 
interlinked, and decentralized storage may be 
desirable 

• Reduce operational costs, while preserving 
availability and fault tolerance 



Goals (II) 

• Allow traditional applications to seamlessly 
integrate computing resources available in the 
cloud 
– Off-loading: off-load work to the cloud to improve 

performance or preserve battery 
– Synchronization: Checkpoint and synchronize 

application state across multiple devices 

• Decouple the mode of deployment from the 
application logic 



Rusta Architecture 

• A centralized hub service is implemented as a 
conventional cloud service 
– Maintains critical system state 
– Common point of contact for all clients 
– Code repository (Java class files) 

• Clients communicate sparingly with the hub 
– Bootstrapping new clients 
– Looking up other clients 
– Acquiring work to execute 
– To coordinate checkpoints 



Traditional Service Architecture 



Rusta Architecture 



Implementation 

• Hub service implemented on Google App Engine, 
in its Java servlet environment 
– Accessed via XMPP, i.e. using a chat client 
– “Command-line” admin interface via chat 

• Client library implemented in Scala 
– Provides high-level programming abstractions for 

application/service developers 
– Uses Akka to drive an internal actor system 
– Communicates with the hub using GWT’s RPC 
– Polling using Google’s channel API 



Scala 

• High-level multi-paradigm language 
– Powerful type system 
– Flexible syntax 
– Structural pattern matching 
– Closures 

• Runs on the Java virtual machine (JVM) 
– Integrates seamlessly with Java code 

• Ideally suited for embedding domain-specific 
languages (DSLs) 
 



Programming Interface 

• Rusta clients are written in Scala 
– But can easily be glued to legacy Java code 

• Functional continuation-based programming 
– But tailored to mimic an imperative style 

• Location transparent 
– Data is accessed in a functional manner, so data 

locality can be arranged transparently 
– Move the computation to the data, or vice versa 



Processes 

• Rusta processes are light-weight execution units 
– Thread-like programming abstraction 
– Communicate through asynchronous message passing 
– Each process has a main message processing loop and 

may branch off into nested loops 
• Process state is captured as a continuation 

closure 
– Limited by heap space only; scales to hundreds of 

thousands of processes per machine 
– Easy to serialize and transfer process state 

 



Hello World 

object Example extends RustaApp { 
 
  val example = new Deployment { 
    group("mygroup") { 
      process("myprocess") { 
        case 'start => println("hello from " + me) 
      } 
    } 
  } 
     
  system.deploy(example) 
} 

• This process listens for a single system-
generated ‘start message 
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Closure that constitutes 
the main message handler 
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Structural pattern matching 



Hello World 

object Example extends RustaApp { 
 
  val example = new Deployment { 
    group("mygroup") { 
      process("myprocess") { 
        case 'start => println("hello from " + me) 
      } 
    } 
  } 
     
  system.deploy(example) 
} 

• This process listens for a single system-
generated ‘start message 

Function of the Rusta API, 
taking curried arguments 
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Process name and other 
optional arguments 



Group Namespace 

• Rusta groups define a hierarchical namespace for 
processes and data items 

• Groups delineate sets of mutually trusted clients 
– Processes may migrate freely within their group 
– Data may be replicated freely within its group 

• Allows fine-tuning trade-offs between privacy, 
availability, and elasticity 
– E.g., larger groups give more elasticity 

• Potentially initialized from a social network 



Message Passing 

• Messages are arbitrary (immutable) objects 
• Receivers use structural pattern matching to 

select (and parse) messages to process 
• Senders may specify a reply handler 

– Specifies how to (eventually) process a reply 
– Messages are tagged with sequence numbers that are 

associated with pending reply handlers 
– Invoked asynchronously whenever a reply arrives 
– Syntactically tied to the sending code, improving 

legibility 
 



Message Passing Example 

group("images") { 
  process("main") { 
    case ’start => { 
      send("thumbnails", (’get, "image.jpg")) { 
        case null => println("No such image") 
        case tn: Image => showImage(tn) 
      } 
    } 
  } 
} 
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Message Passing Example 

group("images") { 
  process("main") { 
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Reply handler 



Data Access 

• Conceptually similar to sending messages and 
handling replies 
– Lookups specify a data key to look up, and a closure to 

execute on the associated data value 

• Just like the closures that capture process state, 
these closures can be serialized and transferred 
– Potentially sending the computation to the data 
– Maintains location transparency while encouraging 

data locality 



group("images") { 
  process("main") { 
    case ’start => { 
      send("thumbnails", (’get, "image.jpg")) { 
        case null => println("No such image") 
        case tn: Image => showImage(tn) 
      } 
    } 
  } 
 
  process("thumbnails") { 
    case (’get, path: String) => { 
      getData(path) { 
        case (image: Image, thumbnail) => { 
          reply(thumbnail) 
        } 
        case (image: Image, null) => { 
          val tn = makeThumbnail(image) 
          putData(path, (image, tn)) 
          reply(tn) 
        } 
        case null => reply(null) 
      } 
    } 
  } 
} 

Look up a data item and 
process it asynchronously 



group("images") { 
  process("main") { 
    case ’start => { 
      send("thumbnails", (’get, "image.jpg")) { 
        case null => println("No such image") 
        case tn: Image => showImage(tn) 
      } 
    } 
  } 
 
  process("thumbnails") { 
    case (’get, path: String) => { 
      getData(path) { 
        case (image: Image, thumbnail) => { 
          reply(thumbnail) 
        } 
        case (image: Image, null) => { 
          val tn = makeThumbnail(image) 
          putData(path, (image, tn)) 
          reply(tn) 
        } 
        case null => reply(null) 
      } 
    } 
  } 
} 

The context is preserved, so that the 
original message can still be replied to 



Stateful Processes 
• Close over variables in outer scopes 
• The Scala compiler includes the variables in 

the closure’s state 
• Used for internal state, private to a process 

– E.g., for data aggregation 

group("mygroup") { 
  var x = 0 
 
  process("myprocess") { 
    case ‘getx => println("x = " + x); x += 1 
  } 
} 



Ongoing Work 

• Scheduling algorithms in the hub 
– Distribute processes among eligible clients 
– Process migration 

• Data placement policies 
– Replication costs vs. availability 
– Cloud storage as a fallback to guarantee 

availability 
• Checkpointing algorithms 

– Consistent cuts 



Applications 

• File sharing 
– Basic image sharing application 

• Collaboration systems 
• Multi-cloud services 
• Lifelog image analysis 
• Personal sensor data processing (soccer domain) 
• Social networking 

– Analytics driven by client machines to empower users 
while preserving privacy 



Summary 
• Rusta allows flexible and decentralized deployment of 

cloud services 
– Alternatively: easy offloading from clients to the cloud, and 

to other clients 
• Simple centralized architecture 

– But the central hub is not a bottleneck 
• High-level programming interface in Scala 

– Light-weight and location-transparent processes 
– Easy to migrate (compared to e.g., thread migration) 

• Process checkpointing and migration currently 
implemented 
– Basic image sharing application developed 

 



Questions? 
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